Course Number and Name

BME301-KINEMATICS OF MACHINES

Credits and Contact Hours

4&60

Course Coordinator's Name

Mr.R.Karthikeyan

Text Books and References

TEXT BOOKS:

- 1. S.S.Rattan-Theory of Machines- Tata McGraw Hill, 2005.
- 2. Rao J.S. & Dukkipatti R.V.Mechanisms and Machine Theory, 2nd Edition-Wiley Estern Ltd-1992.

REFERENCES:

- 1. Bansal- Theory of Machines, 2006.
- 2. Shigley.J.E-Theory of Machines and Mechanisms, 2nd Edition- McGraw Hill Inc, 1995
- 3. V.P.Singh-Theory of Machines ,2001
- 4. royalmechanicalbuzz.blogspot.com/.../theory-of-machines-by-rs-khurmi..

Course Description

To understand the concept of machines, mechanisms and related terminologies.

To analyse a mechanism for displacement, velocity and acceleration at any point in a moving link.

_	Prerequisites	Co-requisites							
Engineering Me	echanics	Nil							
required, elective, or selected elective (as per Table 5-1)									
Required									
Course Outcomes (COs)									
CO1	Upon completion of this course, applications in various field of work	the students can understand mechanism and its							
CO2	Students will be able to draw analytically.	velocity and acceleration diagrams graphically and							
CO3	Understand the analysis method for	optimum design.							
CO4	Understand the importance of friction	on in machine elements.							
CO5	Understand control mechanism								
CO6	Study of gears and its applications								

Sti	udent Outco	omes (S	SOs) fro	om Crite	erion 3	covere	d by thi	is Cour	se					
	COs/SOs	a	b	c	d	e	f	g	h	i	j	k	1	
	CO1	Н	Н	Н			Н		L	н		М	Μ	
	CO2						Н		L			М		
	CO3						Н		L			М	Μ	
	CO4						Н		L			М	Μ	
	CO5						Н		L			М	Μ	
	CO6	Н	Н	Н			Н		L	Н		М	Μ	
List of Topics Covered														
UNIT I INTRODUCTION TO MECHANISMS 12														

UNIT I INTRODUCTION TO MECHANISMS

Introduction-Science of mechanisms-Terms and definitions-Planar, Spherical and spatial mechanisms, Mobility-Classification of mechanisms-Indexing mechanisms, reciprocating mechanism etc. Straight line generators- kinematic inversion- Slider crank chain inversions- Four bar chain inversions- Grashof's law.Determination of velocities and acceleration in mechanisms- Relative motion method (Graphical) for Mechanisms having turning, sliding and rolling pair.

UNIT II SYNTHESIS OF MECHANISMS

Classification of kinematics- Synthesis problems- Chebyshev's spacing, Two point synthesis- Freudenstein method- Four bar mechanism and slider crank mechanism. Types of cams and followers- Follower motions-Uniform, parabolic, SHM, Cycloidal and polynomial-Synthesis of cam profiles for different followers. Cams with specified contours

UNIT III FRICTION

Friction-Types-Application-Inclined plane, Screw jack, Clutch, Brakes Bearings, Journal bearing, Flat pivot bearing, multi collar bearings, Belt & Rope drives.

UNIT IV THEORY OF GEARING

Classification of gears, Law of gearing, nomenclature-Forms of teeth, Cycloidal teeth, Involute teeth-Length of path of contact-Length of arc of contact-Contact ratio-Interference and undercutting- Minimum number of teeth to avoid interference- Internal gears- Extended center distance system- Long and short addendum system- Gear trains-Types-Epicyclical gear trains-Automobile differential unit.

UNIT V CONTROL MECHANISMS

Governors- Gravity controlled governors-Spring control governors, Hartnell governor, and Hartung governor-Governor characteristics- Governor effort and power.Gyroscopes-Gyroscopic forces and couple-Forces on bearing due to gyroscopic action- Gyroscopic effects on the movement of aero plans and ships, stability of two wheel drive and four wheel drive.

16

10

12

10